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We study in detail a critical line on the phase diagram of the Cho-Fisher network model separating three
different phases: metallic and two distinct localized phases with different quantized thermal Hall conductances.
This system describes noninteracting quasiparticles in disordered superconductors that have neither time-
reversal nor spin-rotational invariance. We find that in addition to a tricritical fixed point WT on the critical line,
separating two localized phases, there exists an additional repulsive fixed point WN �where the vortex disorder
concentration WN�WT�, which splits RG flow into opposite directions: toward a clean Ising model at W=0
and toward WT.
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The properties of quasiparticles in disordered supercon-
ductors belonging to new symmetry classes,1 in particular,
transitions between metallic, localized, or quantized Hall
phases,2–5 have been intensively studied. The symmetry class
D may be realized in superconductors with broken time-
reversal and spin-rotation invariances, as in d+ id supercon-
ductors with spin-orbit scattering, or in p+ ip superconduct-
ors, where the spin-rotational symmetry is broken by the
triplet nature of the condensate. The associated changes in
quasiparticle dynamics should be examined by energy trans-
port, since neither charge density nor spin are conserved. In
this Brief Report we present a detailed study of the critical
line on the phase diagram for a model first introduced by
Cho and Fisher �CF� �Ref. 6� �see a detailed description be-
low�, which has a particularly rich phase diagram in two
dimensions.5,7

We employ advanced numerical calculations proposed in
Ref. 5 and described in detail in Refs. 8 and 9 to overcome
round-off errors in calculations of renormalized localization
lengths. We also apply an optimization algorithm to deter-
mine both the critical exponent and the critical energy. These
results allow us to determine the tricritical point where three
phases meet and to study the dependence of the critical ex-
ponent for the insulator-to-insulator transition on the width
of the system. Our results suggest the existence of two fixed
points.

The original network model10 was proposed to describe
transitions between plateaux in the quantum Hall effect. In
the model flux probabilities move along unidirectional links
forming closed loops in analogy with semiclassical motion
of electrons on contours of constant potential. Scattering be-
tween links is allowed at nodes in order to map tunneling
through saddle-point potentials. Propagation along links is
described by diagonal matrices with elements in the form
exp�i��. The transfer matrix for one node relates a pair of
incoming and outgoing amplitudes on the left to a corre-
sponding pair on the right; it has the form

T = ��1 + exp�− ��� exp�− ��/2�

exp�− ��/2� �1 + exp�− ���
� , �1�

where � is a dimensionless relative distance between the
electron energy and the barrier height. It is easy to see that

the most “quantum” case �equal probabilities to scatter to the
left and to the right� is at �=0.

Numerical simulations on the network model are per-
formed on a system with fixed width M and periodic bound-
ary conditions in the transverse direction. By multiplying
transfer matrices for N slices and then diagonalizing the re-
sulting total transfer matrix, it is possible to extract the
smallest Lyapunov exponent � �the eigenvalues of the trans-
fer matrix are exp��N��. The localization length �M is pro-
portional to 1 /�. Renormalized localization lengths for dif-
ferent system widths and different energies satisfy a one-
parameter scaling

�M

M
= f� M

����
� , �2�

where the parameter � can be considered as the thermody-
namic localization length. Indeed, at the critical energy �cr,
the renormalized localization length does not depend on the
system width M. This is achieved by the divergence of � at
�cr on the right-hand side of Eq. �2�.

For a class D symmetry a Bogoliubov–de Gennes Hamil-
tonian is written in terms of a Hermitian matrix.1 The corre-
sponding time evolution operator is real and the generalized

FIG. 1. �Color online� Updated phase diagram for a CF model
with metallic, insulating, and quantized Hall phases.
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phase factors are, therefore, O�N� matrices for a model in
which N-component fermions propagate on links. We study
the case N=1 with phase factors �1. There are three models:
random bond Ising model,11,12 supporting two different local-
ized phases, uncorrelated O�1� model,13 where phases on the
links are independent random variables and all states are
extended,5 and the model first introduced by CF �Ref. 6�
where scattering phases with the value � appear in correlated
pairs. Each model has two parameters: the first one is a dis-
order described by a probability W to have a phase 0 and a
probability �1−W� to have a phase � on a given link. The
second parameter is an energy � describing scattering at the
nodes. For the CF model, the phase diagram �updated ver-
sion of which is presented in Fig. 1� in the �-W plane has
three distinctive phases: metallic, and two insulating phases
characterized by different thermal Hall conductances. The
sensitivity to the disorder is a distinctive feature of class D.

In the CF model the disorder is introduced only at the
nodes allowing for the off-diagonal elements of Eq. �1� to be

multiplied by �1 �disorder probability W is the probability
of that factor to be −1�. In our previous work14 we have
studied a CF phase diagram and its critical exponents far
from �=0. On the other hand, the critical line itself at �=0 is
of particular interest to us. One of the possibilities discussed
in Ref. 15, where a quasiparticle density of states for the CF
model was studied, is the existence of the second fixed point.
This repulsive fixed point WN �the subscript N suggested in
Ref. 15 to underline the similarity to the role of the Nishi-
mori point in the RBIM� is located on the critical line sepa-
rating two insulating phases at the disorder smaller than the
one at the tricritical point WT, where the critical line splits. It
has been suggested16 that we can address this question using
our optimization procedure studying the critical exponent for
different values of disorder W. Indeed, if one believes the
scenario of two fixed points, then the one-parameter scaling
for the disorder W�WN should produce the critical expo-
nents which tend to the value �=1 of the pure Ising model as
one uses only large system widths to get rid of the finite-size
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FIG. 2. �Color online� Numerical results for the disorder W=0.04. �a� Renormalized localization length �M /M versus energy � for various
system widths. �b� A fit of data to one-parameter scaling form �M /M = f��M1/�� for all system widths M =16,32,64,128 and �=1.34. �c� The
same as previous for system widths M =32,64,128 and �=1.11. �d� The same as previous for system widths M =64,128 and �=0.97.
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effects. In contradistinction, for W	WN the repulsive fixed
point should push the critical exponent to the value at the
tricritical fixed point WT.

We have performed numerical calculations at small fixed
values of W for the system widths M =16 and various ener-
gies �. In those cases an obvious critical energy is �=0 �the
most quantum case explained above�. We have been deter-
mining the critical exponents � ����−�� to fit all the data
onto one curve according to Eq. �2� by applying a special
optimization program which checks different critical expo-
nents and chooses the optimal one. We now briefly describe
the optimization procedure.

The routine determines least-squares polynomial approxi-
mation by minimizing the sum of squares of the deviations
of the data points from the corresponding values of the poly-
nomial. The argument of the function fitted by the Cheby-
shev polynomials is M	�−�cr	�. We run this routine for the

wide range of the � values and choose the optimal one.
When it is necessary, we also look for the optimal value of
�cr as discussed below.

We have carried out the analysis, first, for all data points
for all system widths, second, without M =16 data, and third,
without M =16 and 32 data. It turns out that, indeed, this
procedure shows that the critical exponent approaches the
predicted pure Ising model value �=1 as we omit small sys-
tem width data. As a typical example we present here the
data �Fig. 2�a�� and the values of the critical exponent � for
the disorder W=0.04: �=1.34 for M =16,32,64,128 �Fig.
2�b��, �=1.11 for M =32,64,128 �Fig. 2�c��, and �=0.97 for
M =64,128 �Fig. 2�d��. The largest value of disorder for
which this tendency persists is 0.1. To demonstrate that in a
conclusive way at this disorder value, the data for the largest
system width M =256 were necessary: the critical exponent
changes as 1.7→1.6→1.2→1.1 when we omit the small

(b)

(a)

FIG. 3. �Color online� Numerical results for the disorder W
=0.12. �a� Renormalized localization length �M /M versus energy �
for various system widths. �b� A fit of data to one-parameter scaling
form �M /M = f��M1/�� for all system widths M =16,32,64,
128,256 and �=1.74.
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FIG. 4. �Color online� Numerical results for the disorder W
=0.16. �a� Renormalized localization length �M /M versus energy �
for various system widths. �b� A fit of data to one-parameter scaling
form �M /M = f���−�cr�M1/�� for all system widths M
=16,32,64,128, �cr=0.085, and �=1.7.
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system width data consequently. We, therefore, identify WN
=0.1. We argue that our study of the critical exponent can be
related to the RG flow. Indeed, when we omit small system
width data, the smaller the disorder W is, the quicker the
critical exponent converges to the value �=1. This qualita-
tively corresponds to the RG flow from WN=0.1 to the pure
Ising model for W=0. In full agreement with the scenario
suggested15 for W	WN, the critical exponent has a value
distinctively different from �=1; e.g., for W=0.12 �Fig. 3�
the critical exponent is almost constant �
1.7, independent
of the system widths used. In order to be sure that we are still
on the critical line, we allow the optimization program to
look for the critical energy as well. It is very conclusive that
up to the disorder value W=0.14 the critical energy is about
�cr
10−5 which supports the single critical line. For W
	0.14 the optimization program immediately produces
small but finite values of the critical energy. As an illustra-

tion we show in Fig. 4 the data for W=0.16 and its one-
parameter scaling with �cr=0.84�0 and �=1.7. We thus
identify the tricritical fixed point WT=0.14. Obviously, non-
zero critical energies are not calculated rigorously, which is
shown on the phase diagram �Fig. 1� by enlarged “stars.”

To summarize, we have studied in detail the critical line
on the phase diagram of the CF model. We have calculated
the critical exponent and determined two fixed points in
agreement with one of the scenarios suggested in Ref. 15: the
repulsive fixed point at disorder WN=0.1 and the tricritical
fixed point WT=0.14. Obviously, we cannot rule out com-
pletely that for larger system widths the RG flow can reverse
as was found.15
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